580 research outputs found

    The nearby AGB star L2 Puppis: the birth of a planetary nebula ?

    Full text link
    Adaptive optics observations in the infrared (VLT/NACO, Kervella et al. 2014) and visible (VLT/SPHERE, Kervella et al. 2015) domains revealed that the nearby AGB star L2 Pup (d=64 pc) is surrounded by a dust disk seen almost edge-on. Thermal emission from a large dust "loop" is detected at 4 microns up to more than 10 AU from the star. We also detect a secondary source at a separation of 32 mas, whose nature is uncertain. L2 Pup is currently a relatively "young" AGB star, so we may witness the formation of a planetary nebula. The mechanism that breaks the spherical symmetry of mass loss is currently uncertain, but we propose that the dust disk and companion are key elements in the shaping of the bipolar structure. L2 Pup emerges as an important system to test this hypothesis.Comment: 6 pages, 3 figures, Proceedings of the Physics of Evolved Stars conference, 8-12 June 2015, Nice, Franc

    PAH Formation in O-rich Planetary Nebulae

    Full text link
    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae towards the Galactic Bulge. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around such objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. In this work, using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [SIV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts of these tori, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.Comment: 14, accepted for publication in the MNRAS Journa

    Disk evaporation in a planetary nebula

    Full text link
    We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.Comment: 11 pages, accepted for publication in "Astronomy and Astrophysics

    The low wind expansion velocity of metal-poor carbon stars in the Halo and the Sagittarius stream

    Full text link
    We report the detection, from observations using the James Clerk Maxwell Telescope, of CO J == 3\to 2 transition lines in six carbon stars, selected as members of the Galactic Halo and having similar infrared colors. Just one Halo star had been detected in CO before this work. Infrared observations show that these stars are red (J-K >>3), due to the presence of large dusty circumstellar envelopes. Radiative transfer models indicates that these stars are losing mass with rather large dust mass-loss rates in the range 1--3.3 ×\times10810^{-8}M_{\odot}yr1^{-1}, similar to what can be observed in the Galactic disc. We show that two of these stars are effectively in the Halo, one is likely linked to the stream of the Sagittarius Dwarf Spheroidal galaxy (Sgr dSph), and the other three stars certainly belong to the thick disc. The wind expansion velocities of the observed stars are low compared to carbon stars in the thin disc and are lower for the stars in the Halo and the Sgr dSph stream than in the thick disc. We discuss the possibility that the low expansion velocities result from the low metallicity of the Halo carbon stars. This implies that metal-poor carbon stars lose mass at a rate similar to metal-rich carbon stars, but with lower expansion velocities, as predicted by recent theoretical models. This result implies that the current estimates of mass-loss rates from carbon stars in Local Group galaxies will have to be reconsidered.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    VISIR-VLT high resolution study of the extended emission of four obscured post-AGB candidates

    Full text link
    The onset of the asymmetry of planetary nebulae (PNe) is expected to occur during the late Asymptotic Giant Branch (AGB) and early post-AGB phases of low- and intermediate-mass stars. Among all post-AGB objects, the most heavily obscured ones might have escaped the selection criteria of previous studies detecting extreme axysimmetric structures in young PNe. Since the most heavily obscured post-AGB sources can be expected to descend from the most massive PN progenitors, these should exhibit clear asymmetric morphologies. We have obtained VISIR-VLT mid-IR images of four heavily obscured post-AGB objects barely resolved in previous Spitzer IRAC observations to analyze their morphology and physical conditions across the mid-IR. The VISIR-VLT images have been deconvolved, flux calibrated, and used to construct RGB composite pictures as well as color and optical depth maps that allow us to study the morphology and physical properties of the extended emission of these sources. We have detected extended emission from the four objects in our sample and resolved it into several structural components that are greatly enhanced in the temperature and optical depth maps. They reveal the presence of asymmetry in three young PNe (IRAS 15534-5422, IRAS 17009-4154, and IRAS 18454+0001), where the asymmetries can be associated with dusty torii and slightly bipolar outflows. The fourth source (IRAS 18229-1127), a possible post-AGB star, is better described as a rhomboidal detached shell. The heavily obscured sources in our sample do not show extreme axisymmetric morphologies. This is at odds with the expectation of highly asymmetrical morphologies in post-AGB sources descending from massive PN progenitors. The sources presented in this paper may be sampling critical early phases in the evolution of massive PN progenitors, before extreme asymmetries develop.Comment: 9 pages, 4 figure

    Investigating the nature of the Fried Egg nebula: CO mm-line and optical spectroscopy of IRAS 17163-3907

    Get PDF
    Through CO mm-line and optical spectroscopy, we investigate the properties of the Fried Egg nebula IRAS 17163-3907, which has recently been proposed to be one of the rare members of the yellow hypergiant class. The CO J=2-1 and J=3-2 emission arises from a region within 20" of the star and is clearly associated with the circumstellar material. The CO lines show a multi-component asymmetrical profile, and an unexpected velocity gradient is resolved in the east-west direction, suggesting a bipolar outflow. This is in contrast with the apparent symmetry of the dust envelope as observed in the infrared. The optical spectrum of IRAS 17163-3907 between 5100 and 9000 {\AA} was compared with that of the archetypal yellow hypergiant IRC+10420 and was found to be very similar. These results build on previous evidence that IRAS 17163-3907 is a yellow hypergiant.Comment: 14 pages including appendix, accepted for publication in A&

    Carbon-rich dust production in metal-poor galaxies in the Local Group

    Get PDF
    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.Comment: ApJ, in press, 21 pages, 12 figures. Replaced Fig 12, corrected two reference

    Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL

    Get PDF
    We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We present observations in filters V, cntHα\alpha, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntHα\alpha, we are able to see variability on the stellar photosphere. We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntHα\alpha, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntHα\alpha show that the morphology of R Dor changes completely in a timespan of 48 days to a more axisymmetric and compact configuration. The polarised intensity is asymmetric in all epochs and varies by between a factor of 2.3 and 3.7 with azimuth for the different images. We fit the radial profile of the polarised intensity using a spherically symmetric model and a parametric description of the dust density profile, ρ(r)=ρrn\rho(r)=\rho_\circ r^{-n}. On average, we find exponents of 4.5±0.5- 4.5 \pm 0.5 that correspond to a much steeper density profile than that of a wind expanding at constant velocity. The dust densities we derive imply an upper limit for the dust-to-gas ratio of 2×104\sim 2\times10^{-4} at 5.0 RR_\star. Given the uncertainties in observations and models, this value is consistent with the minimum values required by wind-driving models for the onset of a wind, of 3.3×104\sim 3.3\times10^{-4}. However, if the steep density profile we find extends to larger distances from the star, the dust-to-gas ratio will quickly become too small for the wind of R Dor to be driven by the grains that produce the scattered light.Comment: 10 pages, 8 figures, 4 table
    corecore